Try And Error

Friday, April 03, 2009

Configuring Your Cisco Router

Configuring your Cisco Router

If you have just turned on the router, it will be completely unconfigured. If it is already configured, you may want to view its current configuration. Even if it has not been previously configured, you should familiarize yourself with the show commands before beginning to configure the router. Enter privileged mode by issuing the command enable, then issue several show commands to see what they display. Remember, the command show ? will display all the showcommands aavailable in the current mode. Definately try out the following commands:
Router#show interfaces
Router#show ip protocols
Router#show ip route
Router#show ip arp



When you enter privileged mode by using the command enable, you are in the top-level mode of privileged mode, also known in this document as "parent mode." It is in this top-level or parent mode that you can display most of the information about the router. As you now know, you do this with the show commands. Here you can learn the configuration of interfaces and whether they are up or down. You can display what IP protocols are in use, such as dynamic routing protocols. You can view the route and ARP tables, and these are just a few of the more important options.

As you configure the router, you will enter various sub-modes to set options, then return to the parent mode to display the results of your commands. You also return to the parent mode to enter other sub-modes. To return to the parent mode, you hit ctrl-z. This puts any commands you have just issued into affect, and returns you to parent mode.

1. Global configuration (config)

To configure any feature of the router, you must enter configuration mode. This is the first sub-mode of the parent mode. In the parent mode, you issue the command config.
Router#config
Router(config)#

As demonstrated above, the prompt changes to indicate the mode that you are now in.

In connfiguration mode you can set options that apply system-wide, also refered to as "global configurations." For instance, it is a good idea to name your router so that you can easily identify it. You do this in configuration mode with the hostname command.
Router(config)#hostname ExampleName
ExampleName(config)#

As demonstrated above, when you set the name of the host with the hostname command, the prompt immediately changes by replacing Router with ExampleName. (Note: It is a good idea to name your routers with an organized naming scheme.)

Another useful command issued from config mode is the command to designate the DNS server to be used by the router:
ExampleName(config)#ip name-server aa.bb.cc.dd
ExampleName(config)#ctrl-Z
ExampleName#

This is also where you set the password for privileged mode.
ExampleName(config)#enable secret examplepassword
ExampleName(config)#ctrl-Z
ExampleName#

Until you hit ctrl-Z (or type exit until you reach parent mode) your command has not been put into affect. You can enter config mode, issue several different commands, then hit ctrl-Z to activate them all. Each time you hit ctrl-Z you return to parent mode and the prompt:
ExampleName#

Here you use show commands to verify the results of the commands you issued in config mode. To verify the results of the ip name-server command, issue the command show host.

2. Configuring Cisco router interfaces

Cisco interface naming is straightforward. Individual interfaces are referred to by this convention:
media type slot#/port#

"Media type" refers to the type of media that the port is an interface for, such as Ethernet, Token Ring, FDDI, serial, etc. Slot numbers are only applicable for routers that provide slots into which you can install modules. These modules contain several ports for a given media. The 7200 series is an example. These modules are even hot-swapable. You can remove a module from a slot and replace it with a different module, without interrupting service provided by the other modules installed in the router. These slots are numbered on the router.

Port number refers to the port in reference to the other ports in that module. Numbering is left-to-right, and all numbering starts at 0, not at one.

For example, a Cisco 7206 is a 7200 series router with six slots. To refer to an interface that is the third port of an Ethernet module installed in the sixth slot, it would be interface ethernet 6/2. Therefor, to display the configuration of that interface you use the command:
ExampleName#show interface ethernet 6/2

If your router does not have slots, like a 1600, then the interface name consists only of:
media type port#

For example:
ExampleName#show interface serial 0

Here is an example of configuring a serial port with an IP address:
ExampleName#config
ExampleName(config)#interface serial 1/1
ExampleName(config-if)#ip address 192.168.155.2 255.255.255.0
ExampleName(config-if)#no shutdown
ExampleName(config-if)#ctrl-Z
ExampleName#

Then to verify configuration:
ExampleName#show interface serial 1/1

Note the no shutdown command. An interface may be correctly configured and physically connected, yet be "administratively down." In this state it will not function. The command for causing an interface to be administratively down is shutdown.
ExampleName(config)#interface serial 1/1
ExampleName(config-if)#shutdown
ExampleName(config-if)#ctrl-Z
ExampleName#show interface serial 1/1

In the Cisco IOS, the way to reverse or delete the results of any command is to simply put no infront of it. For instance, if we wanted to unassign the IP address we had assigned to interface serial 1/1:
ExampleName(config)#interface serail 1/1
ExampleName(config-if)#no ip address 192.168.155.2 255.255.255.0
ExampleName(config-if)ctrl-Z
ExampleName#show interface serial 1/1

Configuring most interfaces for LAN connections might consist only of assigning a network layer address and making sure the interface is not administratively shutdown. It is usually not necessary to stipulate data-link layer encapsulation. Note that it is often necessary to stipulate the appropriate data-link layer encapsulation for WAN connections, such as frame-relay and ATM. Serial interfaces default to using HDLC. A discussion of data-link protocols is outside the scope of this document. You will need to look up the IOS command encapsulation for more details.

3. Configuring Cisco Routing

IP routing is automatically enabled on Cisco routers. If it has been previously disabled on your router, you turn it back on in config mode with the command ip routing.
ExampleName(config)#ip routing
ExampleName(config)#ctrl-Z

There are two main ways a router knows where to send packets. The administrator can assign static routes, or the router can learn routes by employing a dynamic routing protocol.

These days static routes are generally used in very simple networks or in particular cases that necessitate their use. To create a static route, the administrator tells the router operating system that any network traffic destined for a specified network layer address should be forwarded to a similiarly specified network layer address. In the Cisco IOS this is done with the ip route command.
ExampleName#config
ExampleName(config)#ip route 172.16.0.0 255.255.255.0 192.168.150.1
ExampleName(config)#ctrl-Z
ExampleName#show ip route

Two things to be said about this example. First, the packet destination address must include the subnet mask for that destination network. Second, the address it is to be forwarded to is the specified addres of the next router along the path to the destination. This is the most common way of setting up a static route, and the only one this document covers. Be aware, however, that there are other methods.

Dynamic routing protocols, running on connected routers, enable those routers to share routing information. This enables routers to learn the routes available to them. The advantage of this method is that routers are able to adjust to changes in network topologies. If a route is physically removed, or a neighbor router goes down, the routing protocol searches for a new route. Routing protocols can even dynamically choose between possible routes based on variables such as network congestion or network reliability.

There are many different routing protocols, and they all use different variables, known as "metrics," to decide upon appropriate routes. Unfortunately, a router needs to be running the same routing protocols as its neighbors. Many routers can, however, run mutliple protocols. Also, many protocols are designed to be able to pass routing information to other routing protocols. This is called "redistribution." The author has no experience with trying to make redistribution work. There is an IOS redistribute command you can research if you think this is something you need. This document's compagnion case study describes an alternative method to deal with different routing protocols in some circumstances.

Routing protocols are a complex topic and this document contains only this superficial description of them. There is much to learn about them, and there are many sources of information about them available. An excelent source of information on this topic is Cisco's website, http://www.cisco.com.

This document describes how to configure the Routing Information Protocol (RIP) on Cisco routers. From the command-line, we must explicitly tell the router which protocol to use, and what networks the protocol will route for.
ExampleName#config
ExampleName(config)#router rip
ExampleName(config-router)#network aa.bb.cc.dd
ExampleName(config-router)#network ee.ff.gg.hh
ExampleName(config-router)#ctrl-Z
ExampleName#show ip protocols

Now when you issue the show ip protocols command, you should see an entry describing RIP configuration.

4. Saving your Cisco Router configuration

Once you have configured routing on the router, and you have configured individual interfaces, your router should be capable of routing traffic. Give it a few moments to talk to its neighbors, then issue the commands show ip route and show ip arp. There should now be entries in these tables learned from the routing protocol.

If you turned the router off right now, and turned it on again, you would have to start configuration over again. Your running configuration is not saved to any perminent storage media. You can see this configuration with the command show running-config.
ExampleName#show running-config

You do want to save your successful running configuration. Issue the command copy running-config startup-config.
ExampleName#copy running-config startup-config

Your configuration is now saved to non-volatile RAM (NVRAM). Issue the command show startup-config.
ExampleName#show startup-config

Now any time you need to return your router to that configuration, issue the command copy startup-config running-config.
ExampleName#copy startup-config running-config

5. Example Cisco Router configuration

1. Router>enable
2. Router#config
3. Router(config)#hostname N115-7206
4. N115-7206(config)#interface serial 1/1
5. N115-7206(config-if)ip address 192.168.155.2 255.255.255.0
6. N115-7206(config-if)no shutdown
7. N115-7206(config-if)ctrl-z
8. N115-7206#show interface serial 1/1
9. N115-7206#config
10. N115-7206(config)#interface ethernet 2/3
11. N115-7206(config-if)#ip address 192.168.150.90 255.255.255.0
12. N115-7206(config-if)#no shutdown
13. N115-7206(config-if)#ctrl-z
14. N115-7206#show interface ethernet 2/3
15. N115-7206#config
16. N115-7206(config)#router rip
17. N115-7206(config-router)#network 192.168.155.0
18. N115-7206(config-router)#network 192.168.150.0
19. N115-7206(config-router)#ctrl-z
20. N115-7206#show ip protocols
21. N115-7206#ping 192.168.150.1
22. N115-7206#config
23. N115-7206(config)#ip name-server 172.16.0.10
24. N115-7206(config)#ctrl-z
25. N115-7206#ping archie.au
26. N115-7206#config
27. N115-7206(config)#enable secret password
28. N115-7206(config)#ctrl-z
29. N115-7206#copy running-config startup-config
30. N115-7206#exit

© http://pages.swcp.com

Read More... »»

Subnetting for New Users

Understanding Subnetting

Subnetting allows you to create multiple logical networks that exist within a single Class A, B, or C network. If you do not subnet, you are only able to use one network from your Class A, B, or C network, which is unrealistic.

Each data link on a network must have a unique network ID, with every node on that link being a member of the same network. If you break a major network (Class A, B, or C) into smaller subnetworks, it allows you to create a network of interconnecting subnetworks. Each data link on this network would then have a unique network/subnetwork ID. Any device, or gateway, connecting n networks/subnetworks has n distinct IP addresses, one for each network / subnetwork that it interconnects.

In order to subnet a network, extend the natural mask using some of the bits from the host ID portion of the address to create a subnetwork ID. For example, given a Class C network of 204.17.5.0 which has a natural mask of 255.255.255.0, you can create subnets in this manner:



204.17.5.0 - 11001100.00010001.00000101.00000000
255.255.255.224 - 11111111.11111111.11111111.11100000
--------------------------|sub|----

By extending the mask to be 255.255.255.224, you have taken three bits (indicated by "sub") from the original host portion of the address and used them to make subnets. With these three bits, it is possible to create eight subnets. With the remaining five host ID bits, each subnet can have up to 32 host addresses, 30 of which can actually be assigned to a device since host ids of all zeros or all ones are not allowed (it is very important to remember this). So, with this in mind, these subnets have been created.

204.17.5.0 255.255.255.224 host address range 1 to 30
204.17.5.32 255.255.255.224 host address range 33 to 62
204.17.5.64 255.255.255.224 host address range 65 to 94
204.17.5.96 255.255.255.224 host address range 97 to 126
204.17.5.128 255.255.255.224 host address range 129 to 158
204.17.5.160 255.255.255.224 host address range 161 to 190
204.17.5.192 255.255.255.224 host address range 193 to 222
204.17.5.224 255.255.255.224 host address range 225 to 254

Note: There are two ways to denote these masks. First, since you are using three bits more than the "natural" Class C mask, you can denote these addresses as having a 3-bit subnet mask. Or, secondly, the mask of 255.255.255.224 can also be denoted as /27 as there are 27 bits that are set in the mask. This second method is used with CIDR. Using this method, one of these networks can be described with the notation prefix/length. For example, 204.17.5.32/27 denotes the network 204.17.5.32 255.255.255.224. When appropriate the prefix/length notation is used to denote the mask throughout the rest of this document.

The network subnetting scheme in this section allows for eight subnets, and the network might appear as:

Figure 2:


Notice that each of the routers in Figure 2 is attached to four subnetworks, one subnetwork is common to both routers. Also, each router has an IP address for each subnetwork to which it is attached. Each subnetwork could potentially support up to 30 host addresses.

This brings up an interesting point. The more host bits you use for a subnet mask, the more subnets you have available. However, the more subnets available, the less host addresses available per subnet. For example, a Class C network of 204.17.5.0 and a mask of 255.255.255.224 (/27) allows you to have eight subnets, each with 32 host addresses (30 of which could be assigned to devices). If you use a mask of 255.255.255.240 (/28), the break down is:

204.17.5.0 - 11001100.00010001.00000101.00000000
255.255.255.240 - 11111111.11111111.11111111.11110000
--------------------------|sub |---

Since you now have four bits to make subnets with, you only have four bits left for host addresses. So in this case you can have up to 16 subnets, each of which can have up to 16 host addresses (14 of which can be assigned to devices).

Take a look at how a Class B network might be subnetted. If you have network 172.16.0.0 ,then you know that its natural mask is 255.255.0.0 or 172.16.0.0/16. Extending the mask to anything beyond 255.255.0.0 means you are subnetting. You can quickly see that you have the ability to create a lot more subnets than with the Class C network. If you use a mask of 255.255.248.0 (/21), how many subnets and hosts per subnet does this allow for?

172.16.0.0 - 10101100.00010000.00000000.00000000
255.255.248.0 - 11111111.11111111.11111000.00000000
-----------------| sub |-----------

You are using five bits from the original host bits for subnets. This allows you to have 32 subnets (25). After using the five bits for subnetting, you are left with 11 bits for host addresses. This allows each subnet so have 2048 host addresses (211), 2046 of which could be assigned to devices.

© http://www.cisco.com

Read More... »»

IP Addressing for New Users

Understanding IP Addresses

An IP address is an address used to uniquely identify a device on an IP network. The address is made up of 32 binary bits which can be divisible into a network portion and host portion with the help of a subnet mask. The 32 binary bits are broken into four octets (1 octet = 8 bits). Each octet is converted to decimal and separated by a period (dot). For this reason, an IP address is said to be expressed in dotted decimal format (for example, 172.16.81.100). The value in each octet ranges from 0 to 255 decimal, or 00000000 - 11111111 binary.

Here is how binary octets convert to decimal: The right most bit, or least significant bit, of an octet holds a value of 20. The bit just to the left of that holds a value of 21. This continues until the left-most bit, or most significant bit, which holds a value of 27. So if all binary bits are a one, the decimal equivalent would be 255 as shown here:



1 1 1 1 1 1 1 1
128 64 32 16 8 4 2 1 (128+64+32+16+8+4+2+1=255)

Here is a sample octet conversion when not all of the bits are set to 1.

0 1 0 0 0 0 0 1
0 64 0 0 0 0 0 1 (0+64+0+0+0+0+0+1=65)

And this is sample shows an IP address represented in both binary and decimal.

10. 1. 23. 19 (decimal)
00001010.00000001.00010111.00010011 (binary)

These octets are broken down to provide an addressing scheme that can accommodate large and small networks. There are five different classes of networks, A to E. This document focuses on addressing classes A to C, since classes D and E are reserved and discussion of them is beyond the scope of this document.

Note: Also note that the terms "Class A, Class B" and so on are used in this document to help facilitate the understanding of IP addressing and subnetting. These terms are rarely used in the industry anymore because of the introduction of classless interdomain routing (CIDR).

Given an IP address, its class can be determined from the three high-order bits. Figure 1 shows the significance in the three high order bits and the range of addresses that fall into each class. For informational purposes, Class D and Class E addresses are also shown.




In a Class A address, the first octet is the network portion, so the Class A example in Figure 1 has a major network address of 1.0.0.0 - 127.255.255.255. Octets 2, 3, and 4 (the next 24 bits) are for the network manager to divide into subnets and hosts as he/she sees fit. Class A addresses are used for networks that have more than 65,536 hosts (actually, up to 16777214 hosts!).

In a Class B address, the first two octets are the network portion, so the Class B example in Figure 1 has a major network address of 128.0.0.0 - 191.255.255.255. Octets 3 and 4 (16 bits) are for local subnets and hosts. Class B addresses are used for networks that have between 256 and 65534 hosts.

In a Class C address, the first three octets are the network portion. The Class C example in Figure 1 has a major network address of 192.0.0.0 - 233.255.255.255. Octet 4 (8 bits) is for local subnets and hosts - perfect for networks with less than 254 hosts.
Network Masks

A network mask helps you know which portion of the address identifies the network and which portion of the address identifies the node. Class A, B, and C networks have default masks, also known as natural masks, as shown here:

Class A: 255.0.0.0
Class B: 255.255.0.0
Class C: 255.255.255.0

An IP address on a Class A network that has not been subnetted would have an address/mask pair similar to: 8.20.15.1 255.0.0.0. To see how the mask helps you identify the network and node parts of the address, convert the address and mask to binary numbers.

8.20.15.1 = 00001000.00010100.00001111.00000001
255.0.0.0 = 11111111.00000000.00000000.00000000

Once you have the address and the mask represented in binary, then identifying the network and host ID is easier. Any address bits which have corresponding mask bits set to 1 represent the network ID. Any address bits that have corresponding mask bits set to 0 represent the node ID.

8.20.15.1 = 00001000.00010100.00001111.00000001
255.0.0.0 = 11111111.00000000.00000000.00000000
-----------------------------------
net id | host id

netid = 00001000 = 8
hostid = 00010100.00001111.00000001 = 20.15.1

© http://www.cisco.com

Read More... »»

Thursday, April 02, 2009

Yahoo Messenger Monitor Sniffer

Yahoo Messenger Monitor Sniffer is a useful and handy network utility software designed to capture and observe Yahoo Messenger conversations on all computers in a network.

It is able to record conversations automatically in real time. And export all intercepted messages to HTML files for later processing and analyzing. It is very easy to make it to work, and it will monitor all conversations in your Local Area network without the use of client software installed on the remote computer.


Here are some key features of "Yahoo Messenger Monitor Sniffer":

· Capture and sniff Yahoo Messenger conversations from remote computer on the network.
· Record or Yahoo Messenger chat conversations (include chat room).
· Export all intercepted messages to HTML files.
· Automatically send the chat logs to your e-mail for remote viewing.
· Password and hot key protection.
· Run in stealth mode.
· Start capturing on the program startup.
· User safe, easy, and powerful.

--------------------------------------
You Can Download This Software (Trial)
Click HERE to Download
--------------------------------------

Read More... »»

Sunday, February 22, 2009

Lock or Hidden Folder With Batch File

Lock Folder on Flashdisk with password... Maybe other application or software like Lock Folder... But it must to be Installed... But this just use a script batch file...
To hidden or lock your folder or your files... :D
Copy this script then paste in text editor.. save as *.bat :


===============================================================
cls
@ECHO OFF
title Folder Comics
if EXIST "Control Panel.{21EC2020-3AEA-1069-A2DD-08002B30309D}" goto UNLOCK
if NOT EXIST Comics goto MDCreate
:CONFIRM
echo Are you sure u want to Lock the folder(Y/N)
set/p "cho=>"
if %cho%==Y goto LOCK
if %cho%==y goto LOCK
if %cho%==n goto END
if %cho%==N goto END
echo Invalid choice.
goto CONFIRM
:LOCK
ren Comics "Control Panel.{21EC2020-3AEA-1069-A2DD-08002B30309D}"
attrib +h +s "Control Panel.{21EC2020-3AEA-1069-A2DD-08002B30309D}"
echo Folder Locked
goto End
:UNLOCK
echo Enter password to Unlock Folder
set/p "pass=>"
if NOT %pass%==password goto FAIL
attrib -h -s "Control Panel.{21EC2020-3AEA-1069-A2DD-08002B30309D}"
ren "Control Panel.{21EC2020-3AEA-1069-A2DD-08002B30309D}" Comics
echo Folder Unlocked Successfully
goto End
:FAIL
echo Invalid password
goto end
:MDCreate
md Comics
echo Comics created Successfully
goto End
:End
================================================================

Keterangan :


Comics -> Nama Folder
Password -> Password (bisa di ganti)

(c)My Friend

Read More... »»